Mandibular osteonecrosis due to bisphosphonate use
Ahmet Şalvarcı¹, Serdar Altınay²

ABSTRACT
Due to their efficient osteoclastic inhibitor effect in bone metabolism and antiangiogenic activity, bisphosphonates are widely used in many cancer diseases particularly in prostate cancers with bone metastasis, lung cancer, breast cancer and multiple myeloma, as well as in systemic diseases such as osteoporosis, osteopenia, Paget disease and osteogenesis imperfect for the last 13 years. Prostate cancer is a common cancer in males and it is the leading cause of bone metastasis. Mandibular metastasis is rarely encountered during the course of prostate cancer. Mandibular osteonecrosis as well has begun to be observed along with the availability of more efficient and stronger formulations developed following the use of bisphosphonates. Zolendronic acid, which has been used also by our patient, has widely come into practice as a 3rd generation bisphosphonate. Because of prostate cancer and widespread bone metastases, our patient has been receiving zolendronic acid with maximum androgen blockage for 4 years. Tomography of the patient, who has undergone intensive treatment because of submandibular abscess, demonstrated extensive osteonecrosis in the fovea sublingual region of the mandible corpus. In large series, although, mandibular osteonecrosis was widely seen due to bisphosphonate use for the metastases of lung and breast cancers, this rate was between 9.6% and 11% for prostate cancer within the series. Although our patient had no mandibular metastasis before, mandibular necrosis was observed due to long-term bisphosphonate use. We are going to present our patient who had this rare complication with his clinical picture.

Keywords: Bisphosphonate; mandibular; metastatic prostate cancer; osteonecrosis.

Introduction
Prostate cancer is among the most frequently encountered type of cancer in men which most often metastasizes to bone.¹ The incidence of visceral organ involvement in prostate cancer is 15-20%, while it metastasizes into bones in 80-90% of the cases. In all case-series breast cancers lead the way among cancers involving the facial region, while prostate cancer can metastasize to face in 9-10% of the cases.² Bisphosphonates are widely used in metastatic prostate cancers. Chemically, bisphosphonates are pyrophosphate analogues bound to hydroxyapatite structure of bones. They are resistant to enzymatic fragmentation, and metabolic degradation.³⁴ Especially bisphosphonates are potent inhibitors of osteoclastic activity. They are eliminated through kidneys without any metabolic degradation. They are poorly absorbed from gastrointestinal tract.¹⁵ Bisphosphonates can be retained in the skeletal system for years without undergoing any change.⁶ They trigger apoptosis of the cancer cells, prevent their intercellular invasion, and inhibit tumoral invasion.⁶ Besides they have an antiangiogenic properties, and they can activate T-cells.⁷ As a result, bisphosphonates depress bone turnover, and lead to biomechanical insufficiency which may result in formation of rigid, but very fragile skeletal structure. During bisphosphonate use, complications as renal dysfunction, fever, hypocalcemia, esophageal erosion, mandibular, and maxillary osteonecrosis due to suppression of osteoclastic activity can be seen.⁸ Mandibular osteonecrosis has been reported more frequently with new generation potent bisphosphonates.⁹ In the formation of osteonecrosis, long-term use of the drug, advanced age, poor oral hygiene are the most important risk factors, and drug-related osteonecrosis can develop spontaneously.⁹¹⁰ During formation of osteonecrosis bisphosphonates induce obliteration of regional blood vessels, and consequently avascular bone necrosis occurs.⁹
We will present a patient who developed osteonecrosis, and entered into a phase of spontaneous remission whose mucosal integrity was achieved under conservative treatment without the need for additional treatment.

Case presentation

A 64-year-old patient with lower urinary system complaints was scheduled for transrectal ultrasound-guided 12-quadrant needle core biopsy because of detection of diffuse, and rigid prostate gland palpated 4 years ago during physical examination, and also higher total prostate specific antigen (PSA) (16.3 ng/mL) level. Histopathological diagnosis was Gleason score 4+5 prostate adenocarcinoma. Whole body scanning revealed diffuse bone metastases of the prostate cancer on the right, and left femoral heads, lumbar vertebrae, and left clavicula. The patient was diagnosed as metastatic prostate cancer, and maximal androgen blockade (leuprolide acetate depot 22.5 mg/3 months, and bicalutamide (50 mg/day), and a 3. generation biphosphonate (zolendronic acid) therapies were initiated. At the 36. month of the treatment, the patient complained of diffusely swollen lower jaw, and oral sores which necessitated consultation to the ENT department, and computed-tomography revealed the presence of diffuse submandibular abscess, and the patient was treated accordingly (Figure 1). The patient consulted to us for urological evaluation 3 months after treatment of his submandibular abscess, and complained of persistence of her lower jaw pain, and difficulty in chewing. We learnt that he was using full arch mandibular, and maxillary dental prostheses for 11 years, and he said that he had been regularly taking care of oral hygiene. On physical examination persistence of incomplete dental closure was observed (Figure 2). Total PSA (0.02 ng/mL), and total testosterone (0.1 ng/mL) levels were measured. Recurrent computed-tomographic examination was reported as osteonecrosis of the sublingual fovea in the mandibular corpus (Figure 3). After approval of the patient was obtained for the publication of information, and photos retrieved, biopsy material was excised from the newly formed mandibular bone tissue with impaired mucosal integrity to determine if this specimen was formed secondary to her disease or related to drug therapy. Histopathological examination revealed patchy areas characterized by empty osteocyte lacunes which made us to establish the diagnosis of necrotic bone (Figure 4). Culture material obtained from exposed mucosa was evaluated as normal oral mucosa. Without the need for additional surgery for exposed mucosa of the osteonecrotic mandible, oral antiseptic solutions, and local agents applied for 3 months achieved spontaneous cure. (Figure 5). Zolendronic acid treatment of the patient who was diagnosed as biphosphonate-related mandibular osteonecrosis was discontinued, and parathyroid hormonotherapy was initiated.

Discussion

In a large series, the development of mandibular, maxillary, and mandibulomaxillary osteonecrosis due to biphosphonate use has been indicated to occur in 65, 26, and 9% of the cases, respectively. Besides one-third of the patients could be painless, and asymptomatic.[11,12] Important risk factors for the development of osteonecrosis caused by biphosphonates include brand of the drug, route, dose, and duration of the drug therapy.[10] Majority (93%) of the cases with osteonecrosis reported by the Food and Drug Administration (FDA) up to September 2008 were related to intravenous, and the rest to the oral biphosphonate use with the indication of osteoporosis. The incidence of osteonecrosis of jaw(s) due to biphosphonate use in various publications was
indicated to range between 1, and 21 percent. As suggested by many authors, in addition to clinically observed cases with osteonecrosis, occasionally radiological diagnosis is required.\cite{13,14}

In a study, a group of patients who received IV biphosphonate infusions for approximately 35 times during a median period of 39.3 (11-86 mos) months without development of osteonecrosis, and a group that received IV biphosphonate infusions for 15 times during a median period of 39.3 months (11-86 mos), and developed osteonecrosis were compared. The authors reported osteonecrosis development rates of more than 1%, and 4% of the patients who were under biphosphonate treatment for 1, and 4 years, respectively. and claimed that these rates were higher in zolendronic acid users.\cite{15} Especially, in a series of 350 patients with osteonecrosis related to zolendronic acid, mandibular osteonecrosis was more prevalently observed.\cite{16} In a series of 252 patients who were using biphosphonates since 1997, incidence rate of mandibular osteonecrosis was estimated as 6.7 percent.\cite{17} The incidence of osteonecrosis was reported as 8.6% in zolendronate, 7.3% in pamidronate users. While incidence of osteonecrosis was observably raised to 21% in combined use of both drugs.\cite{12,18,19}

The most prevalent primary focus in breast, lung, and mandibular tumors was detected to be mandible, however mandible was the primary focus in only 9.6% of the cases with prostate cancer.\cite{18} As factors inducing mandibular, and maxillary osteonecrosis related to biphosphonates, incessant movements of chewing, various microbiological agents, fragile mucosa 2 mm-thick which can be easily peeled away from the periosteum have been asserted.\cite{20}

A clear-cut opinion about the treatment of osteonecrosis with biphosphonates is not available yet. The main targets of the treatment is relief of pain, control of the soft tissue infection, and prevention of the disease progression. American Association of Oral and Maxillofacial Surgeons (AAOOMS) recommends application of chlorhexidine gluconate, superficial curettage, and use of antibiotics based on the results of susceptibility tests for exposed bones.\cite{21} AAOOMS deems it suitable to start biphosphonate therapy after completion of all dental therapies, including invasive interventions. In a series of 125 cases, penicilline or second-generation cephalosporins, chlorhexidine
gargles, periodic debridements, regular lavages of the wound site were applied.[22] Still in another series, the authors stated that infection in adjacent tissues can be brought under control by using hyperbaric oxygen therapy which can eliminate anaerobic media, and induce neovascularization. They also emphasized angiogenic effect of hyperbaric oxygen in oncology patients.[23-25] It has been reported that despite all these treatments, most of the time the patient did not respond to treatment, and laser biostimulation therapy could control especially development of soft tissue inflammation, and exert favourable effects on pain relief.[24-26] In our patient additional surgery aiming at the healing of the osteonecrotic mucosal wound in the mandible was not required. Spontaneous mucosal healing was achieved with intraoral applications of antisepsic solutions, systemic oral cephalexin, and local epithelization agents used for 3 months.

As a conclusion, in patients using biphosphonates with the indication of bone metastases, swelling, and pain in the chin, and face should suggest mandibular or maxillary bone necrosis! Biphosphonates have serious beneficial effects in patients with bone metastases. These benefits outweigh the risk of development of osteonecrosis Serious complications which might be related to bone metastases induced by biphosphonate use can be reduced. Sometimes, before initiating biphosphonate therapy in these patients, advice of the dentists is requested for the required preventive orthodontic measures. In patients under biphosphonate therapy despite assertions indicating that oral hygiene training will provide benefit in the reduction of risk of osteonecrosis, the possibility of development of mandibular and/or maxillary osteonecrosis related to biphosphonate use should be kept in mind albeit all prophylactic measures.[1,11,27]

Informed Consent: Written informed consent was obtained from patient who participated in this case.

Peer-review: Externally peer-reviewed.

Acknowledgements: The authors would like to thank İdris Çıldır, MD from Ear & Nose & Throat department for his clinical follow-up of the patient during the submandibular abscess and supply for CT images, and again thank to Dr. Şener Taşdemir, for his evaluation of the pathology of the mandible.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

References

12. Levin L, Luder L. Jaw lesion and discomfort. JAMA 2013;310:2195-6. [CrossRef]
23. Çevik P. Bifosfonat kullanılan hastalarda oral cerrahi uygulamalarında karşılaşılabilecek sorunlar ve tedavisi. I.Ü. Diş Hekimliği Fak. Öğrenci Bitirme Tezi. Danışman; Prof. Dr. Özen Doğan Onur 2009.